(17) Leader, G. R., J. Am. Chem. Soc., 73, 856 (1951).

- Leader, Y., Dannhauser, W., J. Phys. Chem., 67, 1805 (1963).
 Malmberg, C. G., Maryott, A. A., J. Res. Nat. Bur. Stand., 56, 1 (1956).
 Ohta, M., Kato, H., "Nonbenzenoid Aromatics", Vol. 1, J. P. Snyder, Ed.,
- Academic Press, New York, N.Y., 1969, Chapter 4, p 117. Prochàzka, M., Ryba, O., Lim, D., *Collect. Czech. Chem. Commun.*, **36**, (21)2640 (1971)
- (22) Schmid, G. H., J. Mol. Struct., 5, 236 (1970).

- (23) Sinclair, D. B., Proc. I. R. E., 28, 310 (1940).
- (24)
- Stewart, F. H. C., *Chem. Rev.*, **64**, 129 (1964). Vasil'eva, V. F., Yashunskii, V. G., *J. Gen. Chem. USSR (Engl. Transl.*), (25) 32, 2845 (1962)
- (26) Weast, R. C., "Handbook of Chemistry and Physics", 47th ed, Chemical Rubber Co., Cleveland, Ohio, 1966, p E-56.

Received for review February 14, 1977. Accepted May 26, 1977.

Absorption and Fluorescence Properties of Cyanine Dyes

Richard C. Benson* and Henry A. Kues

Applied Physics Laboratory, The Johns Hopkins University, Laurel, Maryland 20810

The absorption and fluorescence properties of a variety of cyanine dyes in dimethyl sulfoxide solutions have been determined. The wavelengths of the absorption and fluorescence maxima and the fluorescence quantum yield relative to sodium fluorescein have been measured. The results are discussed in relation to the molecular structure.

During the course of our research to evaluate indicator substances that could be used in the study of the retinal and choroidal circulation in the eve, a substantial amount of data was obtained regarding cyanine and merocyanine (or polymethine) dyes. Although the polymethine dyes are widely used as photographic sensitizers, in dye lasers, as saturable absorbers for passively Q-switching lasers, and as molecular probes of membrane potential, there does not appear to be a compilation of the spectral data of these compounds in the literature. In fact, very little has been published regarding fluorescence properties at wavelengths longer than 700 nm. We have correlated the spectral properties of the polymethine dyes with their molecular structure in order to predict the wavelengths of maximum absorption and fluorescence and to roughly estimate the fluorescence quantum yield.

Experimental Section

A Beckman DK-2 spectrometer was used to measure the absorption spectra. A schematic of the fluorescence apparatus is shown in Figure 1. Note that because our work was ultimately for ophthalmic applications, the fluorescence was detected in a direction parallel to the excitation light instead of the usual 90° configuration. A 75-W xenon lamp was used as the excitation source, and the output was filtered by a SPEX Model 1670 monochromator; the slit width was 2.5 mm (10 nm band-pass). The excitation light was focused on the sample cell (1-cm cuvette) by a 30-cm spherical mirror. The fluorescence from the sample was coupled out through a 5-cm diameter hole in the center of the mirror, modulated by a mechanical chopper, and focused on the slit (0.5 mm, 5 nm band-pass) of a Perkin-Elmer Model 83 monochromator. The fluorescence detector was an RCA 4832 photomultiplier tube (PMT) which has a rather flat response from 400 to 850 nm. (For wavelengths longer than 850 nm, an RCA C31004A PMT was used.) The PMT output was preamplified and phase-sensitive detected at the modulation frequency using a lock-in amplifier. The lock-in output was then chart recorded.

All measurements were made at ambient conditions without extensive temperature regulation or solvent degassing. The dyes were obtained from several manufacturers (see Table I) and were used without further purification.

The fluorescence quantum yield of the cyanine dyes was measured relative to sodium fluorescein in distilled water. The optimum fluorescein concentration for the 1-cm cuvette was 0.1 g/L (2.7 \times 10⁻⁴ M). The quantum yields have been corrected for the spectral response of the apparatus components.

Results and Discussion

The spectral results are summarized in Table I according to the basic molecular structure. λ_{abs} refers to the wavelength at which the absorption was found to be a maximum. The excitation wavelength (λ_{ex}) refers to the actual wavelength setting of the source monochromator which produces the maximum sample fluorescence. Note that λ_{ex} was not corrected for the spectral variations of the source, and since the intensity of the xenon lamp varied with wavelength, λ_{ex} did not necessarily coincide with λ_{abs} .

Although we were primarily interested in aqueous solutions for the ophthalmic applications, the majority of the dyes were not sufficiently soluble in water. In order to compare the results from a variety of dyes, dimethyl sulfoxide (Me₂SO) was used since most of the dyes were readily soluble in it. Studies of the concentration dependence of fluorescence in Me₂SO for several dyes indicated the maximum fluorescence occurred at approximately 0.1 g/L. This concentration was used in all of the fluorescence measurements reported in Table I.

As mentioned above, the fluorescence quantum yield has been corrected for the spectral response of the apparatus. However, the majority of the dyes are rather impure (3) and, therefore, the quantum yields should be considered for general trends rather than for comparing individual dyes. For example, it is evident from Table I that dyes possessing the 4,4'- or 2,2'-guino structure and the merocyanines generally have low

Figure 1. Schematic of apparatus used in measuring fluorescence spectra.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Me We	(CH = CH) _n - I	- CH = Me Me	Me Me	Me (CH = CH) _n - CH = <	, , , , , , , , , , , , , ,	$ \begin{array}{c} $	± ± × × ×	s + z - x	CCH = CH	z 1)n −CH = <	s, z-à
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	>		$\int_{A}^{Z} (CH = CH)_{n-1}$	H H H C H	Å, Å	RX (CH = CH	$\frac{z}{n_{n}-cH} = \sqrt[n]{n}$	×-		Z H) _n −CH ≠[ζ <u>-</u> z-`α	×
Marufr no. n R ^c X R ^c λ_{abs} , nm λ_{asv} , nm		XR	(CH = CH	\mathbf{z}	X X X X X X X X X X X X X X X X X X X		$H = \underbrace{I_{H}}_{R, H}$	× ×	S M=cH-cH=) R		ν, Έ	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Manufr	<i>d</i> .on	u		Rc	×	ъ,	λ _{abs,} nm	λ _{ex} , nm	λfi	J, nm	Fluores quantum yield ^a
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	-	, C	 (1. 2,2'-Indocarl	bocyanine	C			0	
NK:1405 3 CH,CH=CH, CH,CH=CH, NK:1404 Br CH,CH=CH, CH,SO,Na Total 730 790 790 NK:1404 3 (CH,J,SO,T) 3 (CH,J,SO,T) Total 760 730 790 NK:1404 3 (CH,J,SO,T) Br (CH,J,SO,Na) 760 730 790 NK:1841 2 (CH,J,SO,T) 11.2,2'-Indo-4,5,4',5'-dibenzocarbocyanine 680 685 720 NK:1841 2 (CH,J,SO,T) 11.2,2'-Indo-4,5,4',5'-dibenzocarbocyanine 680 685 755 835 Law.L. Indocyanine Green 3 (CH,J,SO,Na 1 795 765 835 Manufr no. n R X R' Y Z λ_{abs} nm λ_{b1} . n NK:442 1 Me X R' Y Z λ_{abs} nm λ_{b1} . n NK:442 1 Me 4,4'.Me 8:14.1.Me 8:18:14.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.	NK-1639 NK-1751			L CH	2) ₃ 50 ₃ Na	<u> </u>	(CH ₂) ₃ SO ₃ Py (CH ₂) ₃ SO ₃ Na	550 550	4 /U 530	- LU	600 580	0.25
NK-1967 3 $(CH_j)_s SO_3^{-1}$ $(CH_j)_s SO_3^{-1}$ $(CH_j)_s SO_3^{-1}$ 740 735 795 720 NK-1841 2 $(CH_j)_s SO_3^{-1}$ $11.2,2^{-1}$ -Indo-4,5,4',5'-dibenzocarbocyanine 680 685 720 NK-1841 3 $(CH_j)_s SO_3^{-1}$ $1^ (CH_j)_s SO_3^{-1}$ 795 765 835 East. IR-125 3 $(CH_j)_s SO_3^{-1}$ $1^ (CH_j)_s SO_3^{-1}$ 795 765 835 Manufr no. n R X R' Y Z λ_{also} nm λ_{rl} Manufr no. n R X R' Y Z λ_{also} nm λ_{rl} NK-442 1 Me $4,4'$.Me 560^{-1} 560^{-1} 560^{-1} 560^{-1} 560^{-1} 560^{-1} 560^{-1} 560^{-1} 560^{-1} 560^{-1} 560^{-1} 560^{-1} 560^{-1} 560^{-1} 560^{-1} 560^{-1} 560^{-1} 560^{-1} 560^{-1}	NK-1405 NK-1404		ოო	CH ²	соо- сн=сн,	Br -	CH₂COOH CH₃CH≡CH,	760 760	730		06/ 06/	0.25 0.26
II. 2.2'-Indo-4,5,4',5'-dibenzoarabocyanine 680 685 720 NK-1841 2 $(CH_2)_4SO_3^{-1}$ $I (CH_2)_4SO_3^{-1}$ 795 765 835 H.W.D. Indocyanine Green 3 $(CH_1)_4SO_3^{-1}$ $I - (CH_2)_4SO_3^{-1}$ 795 765 835 East. IR-125 3 $(CH_1)_4SO_3^{-1}$ $I - (CH_2)_4SO_3^{-1}$ 795 765 835 Manufr no. n R X R' Y Z λ_{abs} , nm λ_{r1} , n Maufr no. n R X R' Y Z λ_{abs} , nm λ_{r1} , n Maufr no. n R X Y Z λ_{abs} , nm λ_{r1} , n Msult no. n R X Y Z λ_{abs} , nm λ_{r1} , n NK-1839 2 (CH_1), SO_3 - Et N.4.4.Me $8.(3-Et-4.Me-thiazole)$ 660 660 660 660 660 660 550 560 590 590	NK-1967		ε	(CH	2 ³ ,30 ³		(CH ₂) ₃ SO ₃ Na	740	735		795	0.28
H.W.D. Indocyanine Green 3 $(CH_2)_4SO_3Na$ 795 765 835 East. IR-125 3 $(CH_2)_4SO_3Na$ 795 765 835 Manufr no. n R X R' Y Z λ_{abs} , nm λ_{r1} , n Manufr no. n R X R' Y Z λ_{abs} , nm λ_{r1} , n Manufr no. n R X R' Y Z λ_{abs} , nm λ_{r1} , n Marufr no. n R X R' Y Z λ_{abs} , nm λ_{r1} , n Marufr no. n R 4,4'-Me 610 550 560 560 560 590 699 NK-1839 2 C(H_2)_3SO_3- EtSO_4- Et 1/.4'-Me 8.(3-Et-4-Me-thiazole) 610 580 649 650 590 590 590 590 590 590 590 590 590 590 590 590 5	NK-1841		5 5	(CH	11. 2,2'-l	Indo-4,5,4′,5′-di	ibenzocarbocyanine (CH ₂) ₄ SO ₃ Na	680	685	(720	0.36
Manufr no. n R Y Z λ_{abs} , nm λ_{r1} , nm <	H.W.D. Indocya East. IR-125	anine Greei	n n	CH (CH	₂) ₄ SO ₃ ⁻ 2) ₄ SO ₃ Na	<u> </u>	(CH ₂) ₄ SO ₃ Na (CH ₂) ₄ SO ₃ H	795	765		835	0.13
III. $2,2'$ -Thiacarbocyanine III. $2,2'$ -Thiacarbocyanine 560 550 59 NK-442 1 Me p -ASA Me $4,4'$ -Me 560 550 59 NK-1839 2 (CH ₂) ₃ SO ₃ - EtSO ₄ - Et $4,4'$ -Me 8-(3-Et-4-Me-thiazole) 610 580 640 NK-1839 2 (CH ₂) ₃ SO ₃ - EtSO ₄ - Et $1.2,2'$ -Thiacarbocyanine 8-(3-Et-4-Me-thiazole) 610 580 590 591 NK-1638 1 Et Br ⁻ Et $1.2,2'$ -Thiacarbocyanine 9-Me 550 590 591 NK-1638 1 Et Et 9-Me 565 560 590 591 NK-1638 2 (CH ₂) ₃ SO ₃ - (CH ₂) ₃ SO ₃ Na 6,6'-Me 9-Me 550 560 590 591 NK-1838 2 (CH ₂) ₃ SO ₃ - 6,6'-Me 6,6'-Me 660 650 690 690 690 690 690 591 590 591 591 591 591 591 591 591 591 591	Manufr no.	u	Ľ	×	٦, x	> >	7	Z	λ _{abs} , nm	λ _{ex} , nm	λ _{fl} , nm	Fluores quantum yield ^a
NK-1839 2 (CH ₂) ₃ SO ₃ ⁻ EtSO ₄ ⁻ Et 4,4'-Me 8-(3-Et-4-Me-thiazole) 610 580 640 640 640 840 NK-156 2 Et 1V. 2,2'-Thiacarbocyanine 8-(3-Et-4-Me-thiazole) 610 580 640 640 640 850 640 1 Et 8r ⁻ Et 1V. 2,2'-Thiacarbocyanine 550 590 590 890 NK-1638 1 Et EtSO ₄ ⁻ Et 660 650 590 590 NK-1638 2 Et 1 ⁻ Et 660 650 650 669 660 665 700 NK-1838 2 (CH ₂) ₃ SO ₃ Na 6,6'-Me	NK_AD2	 	QM	0.05	qW	111. 2,2'-Thiaca	irbocyanine		560	550 550	д С С	0.018
IV. 2,2'-Thiacarbocyanine·G.S.G.17401EtBrEtNK-16381EtSast. 76632Et 1^- NK-18382(CH ₂) ₃ SO ₃ Na6,6'-Me660665700	NK-156 NK-156	100	(CH ₂) ₃ SO ₃ ⁻ Et	EtSO4 -	(CH ₂) ₃ SO ₃ Na Et	4,4'-Me	8-(3-Et-4-N	Ve-thiazole)	660 610	665 580	695 640	0.23 0.042
G.S.G1740 I Et Br ⁻ Et 9-Me 550 500 59! NK-1638 I Et EtSO ₄ ⁻ Et 565 560 590 East. 7663 2 Et 1 ⁻ Et 660 650 69! NK-1838 2 (CH ₂) ₃ SO ₃ ⁻ (CH ₂) ₃ SO ₃ Na 6,6'-Me 6,6'-Me 660 665 700						IV. 2,2'-Thiaca	rbocyanine					
East. 7663 2 Et I ⁻ Et bou	G.S.G-1740 NK-1638		ដដ	Br ⁻ EtSO ₄ -	나 다 다		9-Me		550 565	500 560	595 590	0.006 0.14
NK-1893 2 C.H.COO ⁺ C.H.COO ⁺ 6.6'-Me 650 68!	East. /663 NK-1838 NK-1893	~ ~ ~	Et (CH ₂) ₃ S0 ₃ [–] C.H.COO [–]	1	Et (CH ₂),SO,Na C.H.COONa	6,6′-Me 6.6′-Me			660 650	650 655	695 685	0.73 0.65 0.19

Table I. Spectral Properties of Cyanine Dyes in Me_2SO , 0.1 g/L

0.36 0.38 0.34 0.28	0.011 0.011 0.25 0.38 0.17 0.16 0.13 0.16	0.093 0.24 0.17 0.071 0.23 0.87	 < 0.001 0.004 0.005 0.006 0.006 0.006 0.007 0.035 	0.036 0.029 0.055 0.055 0.023 0.027 0.027 0.027 0.001 0.001 0.001 0.001	0.14 0.17 0.28 0.10
810 810 815 815	620 620 630 855 855 855 855	515 560 515 535 540 620 740	645 650 760 740 735 740 865	735 740 830 835 835 835 825 825 840	705 695 815 900
765 765 765 765	550 550 605 680 765 765 765 765	465 465 465 465 585 585 620	580 580 650 655 825 825	700 650 710 765 765 765 765 765	620 650 765 825
750 760 780 765	585 585 605 820 810 810	490 525 495 475 585 680	530 615 615 615 615 720 690 690 710	710 705 700 700 820 770 770 780 810 810	660 650 750 860
	irbocyanine 9-Me 10-Cl	ine 9-Et	nine 11-CI 11-Br 11-CI	inine 11-Br 11-Cl 11-(1-EtQuin) 11-(1-EtQuin) 11-Cl	uted in Bridge
	iia-4,5,4',5' -dibenzoca	/l. 2,2'-Oxacarbocyan 4,5,4',5'-Bzo ₂ 5,5'-Ph ₂ 5-ph-4,5'-Bzo	I. 2,2 [′] -Quinocarbocya	I. 4,4'-Quinocarbocya 6,6'-Cl	rlcyclohexene Substitu
Et Et C ₂ H ₄ COOH (CH ₂) ₃ SO ₃ Na	V. 2,2'-Th Et Me Et Et Et C(H ₁),SO ₃ Na Et	V Et (CH ₂)1, CH ₃ (CH ₂)3, SO ₃ H (CH ₂)3, SO ₃ H Et Et		VII Et Et (CH ₂) ₃ SO ₃ Na. Et Et Me Et (CH ₂) ₃ SO ₃ Na	IX. Dimethy Et Et Et
Br - Br -	I - Br - <i>p</i> -TSA <i>p</i> -TSA EtSO, - I -	p-TSA p-TSA p-TSA	- - EtSO4 - - Br - Br - P-TSA	- EtSO ₄ - Br - <i>p</i> -TSA <i>p</i> -TSA <i>p</i> -TSA EtSO ₄ -	1
Et Et C ₂ H ₄ COOH (CH ₂) ₃ S0 ₃ ⁻	Et Me (CH ₂) ₃ SO ₃ ⁻ Et Et Et Et Et	Et Et (CH ₂), CH ₃ (CH ₂), SO ₃ ⁻ (CH ₂), SO ₃ ⁻ Et Et		Et Et (CH ₂), SO, Et Et Me Et C(H ₂), SO, - Et	Et (CH ₂),SO, ⁻ (CH ₂),SO, ⁻ (CH ₂),SO, ⁻
		3 7 8	0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<i>0 0 0 0 0 0</i> 0 0	7 - 0 0
NK-1666 NK-126 NK-1407 NK-1975	G.S.G-1645 G.S.G-2905 NK-2075 NK-2075 NK-1158 NK-1158 NK-1978 NK-1978	G.S.G-1745 G.S.G-1745 G.S.G-1730 East. 11808 NK-1952 NK-2073 East. 11219 NK-1511	East. 7851 G.S.G-1700 NK-179 East. 9618 NK-1150 NK-1143. NK-1143. NK-123	East. 1334 NK-171 NK-2009 NK-1950 NK-1255 NK-4 NK-471 NK-471 NK-153 NK-2061 NK-1949	NK-1836 NK-2070 NK-2237 NK-2236

Journal of Chemical and Engineering Data, Vol. 22, No. 4, 1977 381

Table I (Contin	ued)									
Manufr no.	Ľ	æ	×	کر ع	۶	Z	λ _{abs} , nm	λ _{ex} , nm	λ _{fl} , nm	Fluores quantum yield ^a
				IX. Dimethyl	lcyclohexene Substit	uted in Bridge				
NK-2239	1	(CH,),SO, ⁻		Et	4,5,4',5'-Bzo ₂		800	765	855	0.12
NK-2238	2	(CH ₂) ₃ SO ₃ ⁻		Et	4,5,4',5'-Bzo ₂		920	825	950	0.012
				X. Mer	ocyanine: 2-Thia Der	ivatives				
G.S. G-1875	ľ	Et		CH,COOH			525	465	575	0.006
NK-1149	1	C,H,COOH		Ēt			525	465	585	0.005
NK-756	-	Et 4		Et	6-MeO	hd-6	560	500	610	0.004
NK-1321	2	Et		Et			620	560	665	0.035
NK-1901	2	C,H,COOH		C,H,COOH	6-Me		640	620	665	0.072
NK-1934	2	(CH,),SO,H		Et .			640	620	685	0.048
NK-2050	2	C,H,COOH		C,H,COOH			625	620	660	0.053
NK-1943	2	(CH,),SO,H		C,H,COOH	6, 7-Bzo		640	620	685	0.097
NK-2015	2	Ċ ₂ H ₄ COOH		C ₂ H ₄ COOH	6,7-Bzo		640	620	685	0.083
^a Fluorescence Fast., Fastman e	e quantur Chemical	m yield is relative to	sodium fluore singer. ^c Kev:	sscein. ^b Key: NK, N Me. meŧhvI: Et. eth	lippon Kankoh-Shikis vI: pv. pvridine: Bzo.	o Kenkyusho, Ltd., Okay benzo; Ph, phenyl; Quin	yama, Japan; H.\ , quinoline; MeC	N.D., Hynso), methoxy;	in, Westcol p -ASA = p	t and Dunning; -anilinesulfonic

acid; p-TSA = p-tofuenesulfonic acid. d NK-1528 is a 6,7,6',7'-dibenzo compound

Nuclei	na	λ _{abs} ,b nm	λ _{fl} ,b nm
~°\	1	490	515
	2	585	620
 R	3	680	740
Me_Me	1	550	590
	2	650	690
N'	3	750	/90
R Me Me	1	570	610
	2	680	720
	3	795	835
Ŕ "S	1	560	595
(<u>`</u> >=	2	660	695
I I R	3	760	795
S>-	1	560	590
	2 3	660 765	690 810
H S.	1	600	630
$\langle I \rangle =$	2	700	740
	3	815	855
\square	Ö	530	550
	1	615 720	650
Ŕ	3	820	865
	1	705	740
	2	790	840
	3	865	940
$\langle \gamma^{s} \rangle_{=}$	0	650 750	700
	2	860	900
k rith dimethylcyclohexene substituted in bridge			
lerocyanine	1	530	590

3 750 760 ^a n refers to the length of the cyanine bridge (see Table I). ^b The listed wavelengths are average values derived from the results in Table I. λ_{abs} and λ_{fl} for individual dyes will generally be within 20 nm of the average values.

2-thia derivatives

2

640

675

fluorescence quantum yields, while the other dye structures have quantum yields ranging from roughly 0.1 to 0.5.

It is obvious from the results in Table I that a correlation exists between the length of the cyanine bridge and the wavelengths of maximum absorption and fluorescence, i.e., the longer the bridge, the longer the wavelength. (It should be emphasized that the presence of impurities in the sample was found to have a negligible effect on the wavelengths of the absorption and fluorescence maxima.) The correlation between the molecular structure and the wavelength of the absorption maximum has been known for some time (1, 2), and it was expected that the wavelength of the fluorescence maximum would exhibit a similar correlation. The fluorescence maxima for various nuclei are listed in Table II. The length of the cyanine bridge largely determines the wavelength, and for each -CH==CH group the

Table II. Correlation of Absorption and Fluorescence Wavelengths with Molecular Structure for Cyanine Dy

wavelength increases by roughly 100 nm. However, there is a practical limit to the length of the straight-chain chromophore since the stability of the molecule is greatly reduced for n > 3. Thus, a long wavelength requires substitution of a chemical group in the bridge to increase the stability of the long cyanine chain. An example of such a stabilization is the use of dimeth-ylcyclohexene as the bridge substituent. It should be noted that substitution on the bridge (as opposed to in the bridge for stabilization) generally decreases the wavelength and the fluorescence quantum yield; e.g., compare G-1645 and G-2905 with NK-2075 in Table I.

The heterocyclic nuclei also affect the wavelength, but to a lesser degree than the chromophore length. The oxa derivatives are at shorter wavelengths than the corresponding thia (and selena) derivatives, and substitution of a benzene group on the nuclei at the 4,5 position increases the wavelength by 20-40 nm.

In summary, the spectral properties of a wide range of cyanine dyes have been measured. The absorption and fluorescence maxima of the dyes were found to correlate rather well with the molecular structure, and the fluorescence quantum yield can be roughly estimated on the basis of the molecular structure.

Literature Cited

2139.

(1) Brooker, L. G. S., Sprague, R. H., Smyth, C. P., Lewis, G. L., J. Am. Chem. Soc., 62, 1116 (1940).

(2) Fisher, N. J., Hamer, F. M., Proc. R. Soc., London, Ser. A, 154, 703 (1936).
 (3) Kues, H. A., Teague, C., J. Chromatogr., 135, 221 (1977).

Received for review January 7, 1977. Accepted May 4, 1977. This work was supported by the National Institutes of Health under Contract No. N01-EY-3-

Volumetric Properties of Some Single Molten Hydrated Salts

Surender K. Jain

Hindu College, University of Delhi, Delhi-110007, India

Densities of molten (Mg, Ni, Mn)(NO₃)₂·6H₂O, Fe(NO₃)₃· 6H₂O, FeCl₃·6H₂O, and (Al, Cr)(NO₃)₃·9H₂O, from temperatures far above their melting points to well below into the supercooled region, were measured. In all cases the density and the equivalent volume varied linearly with the temperature, over the range of investigation. The equivalent volumes appear to be governed by the number of molecules of water of hydration per equivalent of cationic charge.

Low liquidus temperatures, strong supercooling, and glassforming tendencies generally exhibited by hydrated melts have given them an exclusive status in the field of solvents for carrying out low-temperature studies, e.g., the molecular and ionic relaxation processes in the long time domain (2, 5, 8, 9, 12), as glassy matrices for trapping and studying the subsequent reactions of radiolysis products (ϑ), and as a media for low-temperature electrochemical (14) and spectroscopic investigations (1, 3). Thus, any study aimed at obtaining information about the fundamental properties of such systems is expected to be beneficial for a better understanding of these systems, at least indirectly.

Precise density data are required for an adequate interpretation of certain other experimental parameters, such as equivalent conductivity, molar refraction, etc. Its variation with temperature and composition can yield information regarding the changes taking place in the melt structure. In molten binary nitrate mixtures the additivity of volumes has been reported by various workers (10, 13). For molten mixtures containing tetrahydrates of calcium and cadmium nitrates and monovalent nitrates, the additivity of volumes has also been reported by Braunstein et al. (4) and Jain (7). Moynihan et al. (11) has shown through ¹H NMR studies that the molten mixtures of tetrahydrates of calcium and cadmium nitrate behave idealy over the entire composition range. Thus, it appears that the principle of additivity provides a useful basis for estimating the equivalent volumes of the mixtures in such systems from the limited density data. These considerations prompted this study regarding the density measurements in certain single molten hydrated salts of bi/trivalent metal nitrates and chloride.

Experimental Section

The source and the quality grade of the salts used in this study are the following: Ni(NO₃)₂·6H₂O, BDH (England), Laboratory Reagent; Mg(NO₃)₂·6H₂O, BDH (India), Analytical Reagent; Fe(NO₃)₃·6H₂O, Riedel (Germany), Guaranteed Reagent; Mn(NO₃)₂·6H₂O, Riedel (Germany), Guaranteed Reagent; Cr(NO₃)₃·9H₂O, Ortanal (Italy), Analytical Reagent; Al(NO₃)₃· 9H₂O, E. Merck (Germany), Guaranteed Reagent; FeCl₃·6H₂O, BDH (India), Laboratory Reagent.

The melting temperatures of these salts, determined by the cooling curve method, are included in Table I. Agreement between the experimentally measured liquidus temperatures and those reported in literature (*16*) leads one to believe that the salts were of the stoichiometric composition as reported by the manufacturers. This, however, was verified in the case of Mg(NO₃)₂·6H₂O by the EDTA titrimetric method; ferric and nickel salts were verified by standard gravimetric methods (*15*). Repeated cross checks established the water content in these salts within ± 0.02 of the stoichiometric value.

The salts were fused in small flasks (ca. 100 cm³) provided with air-tight ground-glass stoppers and were maintained at 60–70 °C for a few hours after fusion. The dilatometer originally designed by Husband (6) was modified so as to allow a direct measurement of the volume of a known amount of the melt. The details regarding the dilatometer, its calibration and measuring technique, etc., were similar to those reported earlier (7).

Results and discussion

The density and equivalent volume data for all the salts investigated in this study are recorded in Table I. The variation of density and the equivalent volume with temperature could be expressed by linear equations of the type

$$\rho(\text{g cm}^{-3}) = \alpha - \beta t \,(^{\circ}\text{C})$$
$$V_{\text{e}}(\text{cm}^{3} \text{ equiv}^{-1}) = A + Bt \,(^{\circ}\text{C})$$

The coefficients α , β , and A, B are the characteristic of the melt; these are presented in Table II. Table III includes the equivalent volumes, the expansion coefficients (at 75 °C), and the crystallographic radii (*16*) of the cations. The results indicate that the volume per gram equivalent of nitrate ion is almost insensitive